(a) Transfer momentum to the walls (b) Momentum becomes zero (c) Move in opposite directions (d) Perform Brownian motion Answer-a (25)
(a) Volume (b) Temperature (c) Pressure (d) Work Ans. d (4)
is Cp=3.4 x 103 cal/kg 0c and at constant volume is Cv= 2.4 x103 cal/kg 0c. If one kilogram hydrogen gas is heated from 10 0c to 200c at constant pressure, the external work done on the gas to maintain …
(a) The temperature will decrease (b) The volume will increase (c) The pressure will remain constant (d) The temperature will increase Ans. a (7)
(a) Pressure and volume (b) Volume and temperature (c) Temperature and pressure (d) Any one of pressure, volume or temperature Ans. d (12)
(a) Q=W=0 and ΔEint =0 (b) Q=0,W>0 and ΔEint =-W (c) W=0,Q>0, and ΔEint = Q (d) W>0,Q<0 and ΔEint =0 Ans. a (8)
(a) ΔQ= ΔU + ΔW (b) ΔQ= ΔU – ΔW (c) ΔQ= ΔW-ΔU (d) ΔQ= – ΔW-ΔU Ans. b (6)
(a) 260 J (b) 150 J (c) 110 J (d) 40 J Ans. d (8)
(a) 260 J (b) 150 J (c) 110 J (d) 40 J Ans. d (7)
(a) Remains constant (b) Becomes zero (c) Increases (d) Decreases Ans. a (6)
(a) 100 J (b) 300 J (c) 419 J (d) 24 J Ans. b (7)
(a) ΔQ (b) ΔW (c) ΔQ + ΔW (d) ΔQ-ΔW Ans. d (6)
(a) System can do work (b) System has temperature (c) System has pressure (d) Heat is a form of energy Ans. d (7)
(a) 166 cal (b) 333 cal (c) 500 cal (d) 400 cal Ans. c (3)
(a) Specific volume (b) Pressure (c) Temperature (d) Density Ans. c (11)
(a) 100 R (b) 150 R (c) 300 R (d) 500 R Ans. c (8)
(a) Initial state only (b) Final state only (c) Both initial and final states only (d) Initial state, final state and the path Ans. d (9)
(a) 654 Joule (b) 156.5 Joule (c) – 300 Joule (d) – 528.2 Joule Ans. a (6)
(i) P1 , V to 2P1 , V (ii) P1, V to P, 2V. Then work done in the two cases is (a) Zero, Zero (b) Zero, PV1 (c) PV1 , Zero (d) PV1, P1 V1 Ans. b (11)
(a) -50 joules (b) 20 joules (c) 30 joules (d) 50 joules Ans. d (5)
(a) Momentum (b) Energy (c) Mass (d) Temperature Ans. b (5)
(a) Decreases (b) Increases (c) Remains constant (d) Depends on the molecular motion Ans. c (19)
(a) – 50 J (b) 20 J (c) 30 J (d) 50 J Ans. b (6)
(a) Q + W (b) Q – W (c) Q (d) (Q – W)/2 Ans. b (2)
area 0.05 m2. Increase in its potential energy will be (T = 0.2 N/m) (a) 5 x 10-2J (b) 2 x 10-2j (c) 3 …
(a) 24πR2S (b) 48 πR2S (c) 12πR2S (d) 36πR2S Ans. a (5)
(a) dQ = dU + PdV (b) dQ = dU x Pdv (c) dQ = (dU + dv)P (d) dQ = PdU + dV Ans. a (10)
(a) r (b) 0 (c) Infinity (d) 1/2r Ans. c (13)
(a) 3 J (b) 6.5 J (c) 1.5 J (d) 4 J Ans. a (7)
(a) 192π x 10-4 J (b) 280π x 10-4 J (c) 200π x 10-3 J (d) None of these Ans. a (12)
(a) 1:21/3 (b) 21/3:1 (c) 2 : 1 (d) 1 : 2 Ans. b (10)
the increase in surface energy. (Surface tension of mercury is 0.465 J/m2 ) (a) 23.4 μJ (b) 18.5 μJ (c) 26.8 μJ …
(a) 0.56×104 J (b) 1.3×102 J (c) 2.7×102 J …
6.21×10-21 J and 484 m/s respectively. The corresponding values at 600 K are nearly (assuming ideal gas behaviour) (a) 12.42×1021 J,968 m/s (b) 8.78×1021 J,684 m/s (c) 6.21×1021 J,968 m/s …
how much work will have to be done (Surface tension of water =7.2 x10-2 N/m) (a) 7.2 x 10-6 Joule (b) 1.44 x 10-5 Joule (c) 2.88 x 10-5 Joule (d) 5.76 x 10-5 Joule …
(a) Released (b) Absorbed (c) Both (a) and (b) (d) None of these Ans. a (12)
108 drops of equal size. The energy expended in joules is (surface tension of Mercury is 460 x 10-3N/m (a) 0.057 …
(a) 2 x 10-2Nm-1 (b) 2 x 10-4Nm-1 (c) 2 x 10-6Nm-1 (d) 2 x 10-8Nm-1 …
(a) 1 (b) 2 (c) 4 (d) 6 Ans. c (10)
a ring of area is (Surface tension of liquid = 5Nm-1) (a) 0.75 J (b) 1.5 J (c) 2.25 J (d) 3.0 J Ans. b (10)