(a) 2 times of H-mean value (b) 1/2 times of H-mean value (c) 4 times of H-mean value (d) Same as H-mean value Answer-b (2)
Vrms the most probable speed Vmp and the average speed Vav obey the relationship (a) Vav >Vrms > Vmp (b) Vrms >Vav >Vmp (c) Vmp > Vav >Vrms …
(TA/MA)=4(TB/MB) where is the temperature and M is molecular mass. If CA and CB are the r.m.s. speed, then the ratio CA /CB will be equal to (a) 2 (b) 4 (c) 1 (d) 0.5 Answer-a (8)
(a) 1930√3 m/s (b) 836 m/s (c) 643 m/s (d) 1930/√3 m/s Answer-b (8)
Vrms is the root mean square velocity of the molecules of a gas and the Vs velocity of sound in it, then these are related as [γ =( CP/Cv)] (a) Vrms =Vs (b) Vrms = √(3/γ)Vs (c) Vrms = √(γ/3)Vs …
(a) Increase (b) Decrease (c) Remain same (d) Decrease for some, while increase for others Answer-c (7)
(a) 800 m/s (b) 400√2 m/s (c) 400 m/s (d) 200 m/s Answer-c (2)
927°C to 27°C. The m.s. velocity of the molecules becomes (a) Double the initial value (b) Half of the initial value (c) Four times the initial value (d) Ten times the initial value Answer-b (11)
(a) 1200°C (b) 927°C (c) 600°C (d) 108°C Answer-b (3)
(O2) has root mean square velocity of C ms–1, then root mean square velocity of the hydrogen (H2) will be (a) C m/s (b) 1/C m/s (c) …
(a) √2:1 (b) 1:√2 (c) 1 : 2 (d) 2 : 1 Answer-a (5)
(a) 2.91 (b) 3.52 (c) 4.00 (d) 4.24 Answer-d (4)
27°C to 327°C (a) √2 (b) 2 (c) 2√2 …
< CH > will be related to that of helium < CHe > as (a) < CH >=√2 < CHe > (b) < CH >= < CHe > (c) < …
( Crms = root mean square velocity of molecules and Ve = escape velocity) (a) Crms < Ve (b) Crms > Ve (c) Crms= Ve …
(a) Same (b) Proportional to molecular weight (c) Inversely proportional to molecular weight (d) Inversely proportional to square root of molecular weight Answer-d (3)
(a) 325.5°C (b) 851°C (c) 651°C (d) None of these Answer-c (3)
O2 molecules will be equal to the velocity of N2 molecules at 0°C (a) 40°C (b) 93°C (c) 39°C (d) …
d1 and d2 , then the ratio of speed of sound in these gases will be (a) d1d2 (b) √d2 /d1 (c) √d1 /d2 …
(a) 273°C (b) 546°C (c) 0°C (d) 136.5°C Answer-a (4)
(a) Independent of its pressure but directly proportional to its Kelvin temperature (b) Directly proportional to the square roots of both its pressure and its Kelvin temperature (c) Independent of its pressure but directly proportional to the square root of …
(a) 2 v (b) 3 v (c) 0.5 v (d) v Answer-d (3)
(a) 4v (b) 2v (c) v/2 (d) v/4 Answer-b (3)
(a) – 216°C (b) – 235°C (c) – 254°C (d) – 264°C Answer-c (15)
(a) 492 m /s (b) 517 m/s (c) 546 m/s (d) 33 m/s Answer-b (33)
(a) 77°C (b) 350°C (c) 273°C (d) 457°C Answer-a (4)
(a) 16 : 1 (b) 1 : 16 (c) 4 : 1 (d) 1 : 4 Answer-d (5)
(a) T (b) √T (c) T2 (d) 1/√T Answer-b (3)
(a) Twice (b) Half (c) Four times (d) One-fourth Answer-a (6)
(a) Equal to that of helium (b) Twice that of helium (c) Half that of helium (d) √2 times that of helium Answer-d (18)
(a) 2 (b) 1.58 (c) 1.6 (d) 1.31 Answer-c (17)
27°C and 1.0×105 N/m2 pressure. When the temperature is 127°C and pressure is 0.5×105 N/m2 , the r.m.s. velocity in m/sec will be (a) (100√2)/3 …
(a) Absolute zero degree temperature is not zero energy temperature (b) Two different gases at the same temperature pressure have equal root mean square velocities (c) The root mean square speed of the molecules of different ideal gases, maintained at …
(a) 3/λ (b) λ/3 (c) √3/λ (d) √λ/3 Answer-d (6)
(a) The r.m.s. velocity of all gases is more than the escape velocity from moon’s surface (b) Its surface is not smooth (c) It is quite far away from the earth (d) It does not have population and plants Answer-a …
(a) 1219°C (b) 1492°C (c) 400°C (d) 400 K Answer-a (12)
(a) Will increase (b) Will decrease (c) Will remain unchanged (d) Depends on the other factors Answer-c (7)