(a) Conduction of heat from a hot reservoir to a cold reservoir (b) Conversion of heat into work isobarically (c) Conversion of heat into internal energy isochorically (d) Conversion of work into heat isochorically Ans. d (13)
(a) 28 joule (b) 27 joule (c) 25 joule (d) 24 joule Ans. d (4)
(a) -√γ ΔV/V (b) -ΔV/V (c) -γ ΔV/V (d) -γ2 ΔV/V Answer-c (7)
(a) –166 J (b) 166 J (c) –168 J (d) 168 J Answer-b (6)
V1 to V2 . The amount of work done by the gas is greatest when the expansion is (a) Isothermal (b) Isobaric (c) Adiabatic (d) Equal in all cases Ans. b (20)
(a) Adiabatic < Isothermal < Isobaric (b) Isobaric < Adiabatic < Isothermal (c) Adiabatic < Isobaric < Isothermal (d) None of these Ans. c (20)
(a) Temperature (b) Pressure (c) Heat (d) Temperature and pressure Explanation-(c) In adiabatic process, no heat transfers between system and surrounding. (7)
V1 is completely changed into a gas of volume V2 at a constant external pressure P and temperature T. If the latent heat of evaporation for the given mass is L, then the increase in the internal energy of the …
(a) 540 ml (b) 350 ml (c) 280 ml (d) 135 ml Answer-c (18)
Vo at 27°C. It is heated at constant pressure so that its volume becomes 2Vo. The final temperature is (a) 54°C (b) 32.6°C (c) 327°C …
2×10-3 m3 to 3.34 m3. The work done by the system is about (a) – 340 kJ (b) – 170 kJ (c) 170 kJ (d) 340 kJ Answer-d (4)
0.25m3 at constant pressure 103 N/m2 , the work done is (a) 2.5 ergs (b) 250 J (c) 250 W (d) 250 N Answer-b (6)
(R = 2 cal mol–1 oC–1) (a) 54 cal (b) 600 cal (c) 60 cal (d) 546 cal Answer-c (9)
(a) 2×104 joules (b) 2×100 joules (c) 2×105×100 joules (d) 2×10–5×100 joules Answer-a (8)
50 N/m2 from a volume of 10m3 to a volume of 4m3 . Energy of 100 J then added to the gas by heating. Its internal energy is (a) Increased by 400 J (b) Increased by 200 J (c) Increased …
(a) The work is done by the gas (b) Internal energy of the gas increases (c) Both (a) and (b) (d) None from (a) and (b) Answer-c (5)
V1 to V2. The work done by the gas is (a) P(V2-V1) (b) P(V1-V2) (c) P(V1γ-V2γ) (d) (PV1V2)/(V2-V1) Answer-a (6)
2.1×105N/m2. What will be its isothermal modulus of elasticity[(Cp/Cv)=1.4] (a) 1.8×105N/m2 (b) 1.5×105N/m2 (c) 1.4×105N/m2 (d) 1.2×105N/m2 Answer-b (14)
(a) Zero (b) 100J (c) – 50J (d) 50J Answer-d (8)
(a) 350×40.4 K (b) 300×40.4 K (c) 150×40.4 K (d) None of these Answer-b (2)
(a) 1 : 16 (b) 1 : 8 (c) 1 : 4 (d) 8 : 1 Answer-d (3)
(a) Lesss than P (b) More than P (c) P (d) Either (a) or (c) Answer-b (5)
(a) ΔU=-W in an adiabatic process (b) ΔU=W in an isothermal process (c) ΔU=-W in an isothermal process (d) ΔU=W in an adiabatic process Answer-a (2)
(a) Adiabatic expansion (b) Adiabatic compression (c) Isothermal expansion (d) Isothermal compression Answer-b (5)
105 N/m2 . On suddenly pressing the piston the volume is reduced to half the initial volume. The final pressure of the gas is (a) 20.7 ×105 (b) 21.3 ×105 …
(a) 273 K (b) 573 K (c) 373 K (d) 473 K Answer-a (6)
(a) (T+2.4)K (b) (T-2.4)K (c) (T+4)K (d) (T-4)K Answer-d (8)
(a) Its pressure increases (b) Its temperature falls (c) Its density increases (d) Its thermal energy increases Answer-b (5)
Cp/Cv for the gas is (a) 3/2 (b) 4/3 (c) 2 (d) 5/3 Answer-a (10)
(P1,V1,T1) to (P2,V2,T2) . Which of the following relation is correct (a) T1V1γ-1=T2V2γ-1 (b) P1V1γ-1=P2V2γ-1 (c) T1P1γ=T2P2γ (d) T1V1γ=T2V2γ Answer-a (9)
(a) P‘=P (b) P‘=2P (c) P‘=P ×215/2 (d) P‘=7P Answer-c (8)
(a) 27.5°C (b) 75°K (c) 150K (d) 150°C Answer-c (3)
(a) 627°C (b) 527°C (c) 427°C (d) 327°C Answer-d (12)
(a) Adiabatic process (b) Isothermal process (c) Isobaric process (d) Isochoric process Answer-a (4)
(a) 420K (b) 327°C (c) 300K (d) -142°C …
(a) -2767.23 J (b) 2767.23 J (c) 2500J (d) -2500J Answer-b (3)
(a) Isochoric (b) Isobaric (c) Isothermal (d) Adiabatic Answer-(d) In adiabatic process, no transfer of heat takes place between system and surrounding. (4)
(a) Zero (b) Infinite (c) Finite but non-zero (d) Undefined Answer-a (6)